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This article is devoted to describing the possibility of 

substantiating A. Einstein’s general theory of relativity by 

calculating, using its methods, the sums of some divergent series. 

For this, the series representing the Riemann zeta function is 

taken. The values of zeta (-1) and zeta (0) were calculated. The 

key element of the calculation is the singularity of the metric that 

occurs when solving Einstein's equations, describing the motion 

of a material particle simulating the calculation process. From the 

one hand, this once again makes it possible to make sure that 

singularities are a necessary element of the theory. From the 

other hand, it demonstrates that the calculation of the divergent 

series, which is non-computable on the conventional computer, 

can be performed on the relativistic one. At last, it proves that 

calculation itself can be regarded as a factor which influences the 

metric of the surrounding space i.e. the metric of the numerical 

axis in this case. The last wipes the difference between calculation 

and motion. 

 

 

Traveling time of the particle in the system of the resting 

observer versus coordinate 
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1 Introduction 

Einstein’s general theory of relativity [1, 2] (GR) is the cornerstone for many areas of modern science: astrophysics, theory of 

elementary particles, field theory, etc. It can be said that it defines the basis of the modern physical picture of the world, laying 

the post-Newtonian concept of space and time, replacing the Newtonian theory of gravity. In other words, GR is a key element of 

modern knowledge in general. Therefore, special attention is paid to its experimental confirmation. 

The first confirmations were received immediately after its creation. We are talking about calculating the anomalous value of 

the secular displacement of the perihelion of Mercury [2] and observing the deflection of the light beam in the field of a massive 

body [3]. Since then, many other observations and experiments have confirmed a significant amount of theoretical predictions, 

including gravitational time dilation, gravitational redshift, signal delay in a gravitational field, and gravitational radiation [4]. 

Despite this, at first glance, an exhaustive experimental confirmation, the question of the truth of GR is not closed. The 

reason is not so much in the lack of accuracy of measuring devices or in an insufficient number of experiments, but in the very 

concept of “experimental justification”. Although the positive result of once more experiment in addition to the already existing 

ones adds confidence in the theory, in this case, GR, the question of its truth or falsity will thus never be closed and its 

acceptance or rejection will be for the most part a matter of personal preference. The same is true of experiments, allegedly 

refuting GR, like any other theory, although the role of negative experiments is much more significant. 

This is the reason for the emergence of many alternative theories of gravity [5]. The motivations for creating them are, on 

the one hand, the desire to include in the theory of new observable phenomena, and, on the other hand, to rid it of elements that 

contradict the usual notions - singularities.  

From a philosophical point of view, a singularity is the actualization of infinity, the penetration of which into theory has 

always been opposed by scientific thought. With the actual infinity of the opposite kind - Newtonian fluxions, science has coped 

with the concept of limits [6]. Nothing like this happens with singularities. Moreover, the presence of singularities in GR has 

been proved by various methods that differ from direct calculations [7].  

This paper proposes a different approach to proving the validity of GR, in which singularities play a central role. It is about 

calculating the sums of some series, which in the usual sense, i.e. in a flat Euclidean metric diverge, while their calculation in a 

non-Euclidean metric, also singular, leads to a known final result. In this paper, we study the series for the Riemann zeta-

function [8]. The main goal of the sum calculation problem is to find the metric ensuring the convergence of the series, which is 

achieved by solving the Einstein equation with a suitable source. In our case, the series is summed up in the moving reference 

frame, and the sum is calculated (“observed”) at a resting frame. After finding the metric, the relativistic equation of motion of the 

material point moving in the vicinity of the singularity is solved. The sum of a series is defined as the distance traveled by the 

point from the initial position to the hitting of the singularity. When approaching the singularity, the “time” of calculation 

aсcording to the clock of the stationary observer tends to infinity, which means that the sum of the divergent series is not 

computable in the ordinary, i.e. flat metric. In this sense, the computation process resembles the work of a relativistic 

supercomputer [9]. The accuracy of the calculation depends on the exact or approximate solution of Einstein equation. In some 

cases, it is possible to achieve absolute accuracy of the result, unattainable for any natural experiment. 

The results of this work show that the confirmation of the Einstein’s general theory of relativity can be found not only in the 

world of high energies and in the deep Cosmos but and at a simple writing table, what emphasizes its all-pervading nature. 

2 Calculation the sum of a series for zeta (-1) 

Riemann zeta function in the complex plane, i.e. for complex w is presented by the series  

ivuwnw
n

w 




 ,)(
1

       (1) 
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(u and v are real) which converges for u>1 [8]. For the values of the argument u <1, the series (1) diverges and here the values of 

the zeta function are determined using the analytical continuation [8]. Some calculations required the development of special 

methods. For example, zeta (-1) = -1/12 was first computed by Ramanujan using the summation method he specially developed. 

For the finding zeta (-1) let us formulate a simple physical task - to calculate the distance which is gone by a particle for a time 

t, moving along a straight line with constant acceleration  a = 1, the initial speed v0 = ½ and the initial position S0 = 0. 

Mathematically, the answer can be represented as a finite sum 

0)0(

,
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     (2) 

If we assume the time t discrete and dimensionless the S(t) represents the partial sums of (1).  

Recall that the uniformly accelerated motion of the particle in classical physics requires according to Newton's second law, a 

constant force which operates on the particle in the direction of its movement. This effect can be achieved by placing at the point 

x = 0 (the direction of movement of the particle is taken as the axis OX of our frame of reference) an infinite plane coincident 

with the plane YOZ, having a constant mass density σ. The gravitational potential of this plane is equal to φ(x)=2πσKx, and the 

force acting on a unit point mass is equal to E=-φx=-2πσK and is directed along ОХ, K – is the gravitational constant. The 

expression for the space-time metric may be found from solving the Einstein equations [10] 

ikikik T
c

Kπ
RgR

4

8

2

1


       (3) 

Here R = Ri
i  – is the trace of the Ricci tensor Ri

k, gik – is the metric tensor; Tik  - is the energy-momentum tensor; с – is the 

speed of light in vacuum; indices i, k have values 0, 1, 2, 3. Let us write the expression for the interval 
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    (4) 

The standard notations for g00 and g11 are used [10].  The solution is very similar to the Schwarzschild solution of the 

problem of finding the metric near a point mass [10]. The non-zero Christoffel symbols are follows[10]: 
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The point means a derivative on ct, prime - on x1=x. For x ≠ 0 where Tik = 0 the equations (3) can be reduced to the equations 

Rik =0, which for R00  and R11 lead to a single equation 

0
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   (6) 

and the equation for R01 is reduced to identity. Assuming λ = -ν, and all time derivatives equal zero, the last equation reduces 

to the form 

 
  0

2
 νν

       (7) 

which has a solution eν = C1x+C2, С1,2 – are constants. Their appropriate choice gives the desired solution 

 

x
c

Kπσ
eν

2

4
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        (8) 

considering the connection  in the weak gravitational field limit of the component g00  and the Newtonian potential φ[10]: 

g00=1+2φ/c2. Let write the final form of the interval 
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The expression for the interval (9) for | x | << xc , where xc=c2/4πσK, coincides with the well-known expression derived from 

the Einstein equivalence principle [11].  

Let us treat the solutions of the equations of motion of the particle in question [10] 
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Given the nonzero Christoffel symbols and the expression for the derivative ν' =e-ν/xc, we receive the system of two equations 
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The second equation in (11) is integrated and gives  
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B is a constant. After substitution (12) into the first equation in (11) it looks as follows 
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Equation (13) can be integrated once that leads to an expression for the 4-speed (D - is a constant) 
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or in another form in variable x0  
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The constants of integration can be found comparing the expression of (15) with a corresponding classical result. A classic 

case corresponds to| x |<< xc. Expanding the right side of the (15) in x we receive the classical limit of (15)  
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It should be compared with the classical result following from the law of conservation of energy 
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x0 – is the value of  х wherein the speed  v = 0, signs “±” ensure the positivity of the right side, taking into account that 

|x0|≥|x|. So for the sign “-“  we receive   

 

1
B

D

        (18) 

Approach the massive particle to the point x = -xc according to the formula (15) spends an infinite time from the point of view 

of a resting observer, as is seen in Fig. 1: 

 

Fig. 1. | Traveling time T = ct/xc of the particle in the system of the resting observer received from the solution of (15) versus coordinate q = x/xc. 

If we’ll try to calculate the sum S(∞)=zeta (-1) (2) with the help of formulas derived above we’ll find that the condition for the 

velocity v0 = 0,5 cannot be satisfied for real x as seen from the Fig. 2. 
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Fig. 2 | Velocity of the particle (18) in the system of the resting observer versus coordinate; V(q)=(1+q)(-q)1/2, q=x/xc. Point q0 = -1.41965 corresponds to the 

speed v0 = -0,5. 

 Thus we slightly change our task and instead of searching of the sum S(∞) (1) we will find another sum S1(∞), where 
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It is obvious that S(∞)=S1(∞) +ζ(0)=S1(∞)-0,5 [8]. The initial values for the S1 are just the same as for the S except for the 

value for the initial speed which looks as follows: v0 = -0.5, and easily can be satisfied what gives the value for the q0 =-1.41965. 

The condition S10 = 0, means that the initial point should be placed at the point q0 = -1.41965. Then the distance which has 

been traveled by a massive particle before its stop at point qc = x/xc = - 1 is equal to -1 – (-1.41965) - 0,5 = -0.08035 from the 

point of view of the distant  observer. This coincides with the exact value for ζ(-1)=-0,08333 with relative error 3.576 % what is 

the consequences of using the approximate formula (9) for the metric. 

3 Calculation the sum of a series for zeta (0) 

To calculate zeta (0), notice that corresponding partial sums S(t) = Σt
n=11 = t look as expressions for a distance traveled by the 

material particle moving with constant velocity v = 1 i.e. without acting any force. Then the calculation algorithm should be 

changed by placing two planes perpendicular to the X-axis and identical to that considered above. Doing similar calculations, we 

get an expression for the interval ds (terms ~dy2 and ~dz2 we omit) 
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So the value zeta(0) = S(∞) when we use the last expression for metric (20) taking into account that the space of uniform 

motion is bounded by singularities. Solving the equations of motion (10) for Γkl
i = 0 we find: x - x0 = s, t - t0 = s (in dimensionless 

form; x0, t0 are constants of integrating, s is a proper time) and choosing x0 = 1 and t0 = 0  we have  x – 1 = t = S(t). From the first 

equation we find that the particle moving to the right crosses the horizon (fall down in the singularity x = xc/2) having the 

magnitude of Sh
 =S(-0.5)= -0.5. Because x can’t exceed further as well as S(t) then we conclude that   

  
5.0)()0(  hSS

     (21) 

what coincides with the right value [8]. 

4. Discussion 

When calculating the values of the zeta-function, were guided by the well-known position of GR — after a particle hits 

the singularity, it becomes inaccessible for a resting observer. From the point of view of calculation, this means that the desired 

sum of the series stops changing and acquires its final value. 

Let us dwell on some details of the calculations. 

Expression (9) for the metric is an approximate solution of the problem since it corresponds to the motion of a particle 

under the action of a constant force E, which is known to be a Lorentz invariant [12]. Our task was to find the metric 

corresponding to the particle motion with constant acceleration (in the resting observer system w = const. It is known that 

acceleration w'  in the reference system moving with velocity v and the acceleration w in the resting one are connected by the 

formula [12] 

 w
c

v
w 
















2/3

2

2

1        (22) 

Thus to apply the proposed method for this solution, it is necessary to assume that the mass density σ is not constant 

due to alternating v(x). However, the Einstein equations in this case are much more complicated and are unlikely to have a closed 

solution. Therefore, as well as in [13], we will use the expression (9) for the metric, especially since the error, as it turns out, will 

be small. Really, it follows from Fig. 2 that maximal value of the quotient (v/c)2 ≈ 0.14 what confirms the above consideration. 

Exactly the same considerations allow us to explain the accuracy of the calculation result for zeta(0) (21) since in this case, the 

velocity v is constant. 

The behavior of a material point moving in a metric (9) resembles a movement in a gravitational field of a black hole, 

more precisely of its one-dimensional analog. However, the calculation for zeta(-1) of the distance traveled between the 

singularity and the position on the real axis, where the velocity of the point is known, is performed for the so-called, white hole, 

which is a temporary reflection of the black hole. This is explained by the choice of the sign for the potential φ(x) and will not 

lead to the need to change the calculations since the equations are symmetric with respect to the reflection in time. 

The results presented in this paper allow us to put an end to the ongoing attempts to eliminate singularities from A. 

Einstein’s general theory of relativity. Such an approach to solving scientific disagreements has historical roots. Recall  

that the first confirmations of Lobachevsky’s geometry were related with the calculation of some integrals [14]. 

The question of how the results of this work will change if we take into account the cosmological term in equations (3) is worthy 

of interest. On the one hand, this will lead to a considerable complication in obtaining both solutions of the Einstein equations 

and relativistic equations of motion. On the other hand, it can improve the accuracy of calculating zeta(-1). Then it would allow 

speaking about the close connection between computations and Cosmos and would be an argument in favor of the Pythagorean 

view of the nature of numbers. In any case, this is the subject of separate publications. 
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5. Conclusion 

This article is devoted to describing the possibility of substantiating A. Einstein’s general theory of relativity by 

calculating, using its methods, the sums of some divergent series, for which the series representing the Riemann zeta function are 

taken. The calculation algorithm resembles the work of a relativistic supercomputer when the calculation is performed in a 

moving frame of reference, and the definition (“observation”) of the result performs in a resting frame. The key element of the 

calculation is the singularity of the metric that occurs when solving Einstein's equations, describing the motion of a material 

particle simulating the calculation process. 

The accuracy of the calculation depends on how accurately the metric is determined. For zeta(0) the result coincides 

with the exact one. This once again makes it possible to make sure that singularities are a necessary element of the theory and 

attempts to construct gravitational theories free from them are only a tribute to personal preferences. 
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