top of page
ORCID_iD.svg.png

Locked

Tphysicsletters/6981/11/1490/3728tpl/Tunable structure-activity correlations of molybdenum dichalcogenides (MoX2; X=S, Se, Te) electrocatalysts via hydrothermal methods: insight into optimizing the electrocatalytic performance for hydrogen generation

Theoretical Physics Letters.png

Sunday, February 25, 2024 at 6:30:00 AM UTC

Request Open

Article Rating by Publisher
8
T. Physics
Article Rating by Readers
10

Tunable structure-activity correlations of molybdenum dichalcogenides (MoX2; X=S, Se, Te) electrocatalysts via hydrothermal methods: insight into optimizing the electrocatalytic performance for hydrogen generation

Zhexu Xi
ACKNOWLEDGMENTS
Not Applicable.

Unlock Only

Changeover the Schrödinger Equation

This option will drive you towards only the selected publication. If you want to save money then choose the full access plan from the right side.

Unlock all

Get access to entire database

This option will unlock the entire database of us to you without any limitations for a specific time period.
This offer is limited to 100000 clients if you make delay further, the offer slots will be booked soon. Afterwards, the prices will be 50% hiked.

Newsletters
Abstract

Hydrogen Evolution Reaction (HER) has always gained wide attention as one of the eco-friendly and sustainable pathways for efficient hydrogen generation and storage; also, two-dimensional molybdenum dichalcogenide (MoX2, where X stands for S, Se, Te) layers have emerged as a class of quasi-ideal electrocatalysts because of their large surface area, rich reserves and outstanding conductivity. However, besides greater HER activity, the maturity and diversity of modification strategies result in a more puzzling relationship between electrocatalytic mechanisms and the corresponding practical performance. In this article, based on a comprehensive review of fundamentals, principles and interconnected similarities of the MoX2 family, we focus on the structure-activity correlation of layered MoX2 for HER enhancement via hydrothermal synthesis. This method is summarized from different experimental systems to efficiently modulate the crystal structure and surface for boosted HER activity. Here, with the adjustment of three key experimental parameters: the categories of MoX2, reaction temperature and the molar amount of added reactants, the optimum HER performance can be obtained at the best conditions (MoSe2 species, 180℃ and a vast ratio of the reductant or metal precursor), and more microscopically, a controlled structure-activity relationship can be inducted. This summary may pave a new path for the controllable synthesis and modification of MoX2-based catalyst materials.

Introduction

As the environmental pollution and energy crisis become increasingly severe, hydrogen, owing to its tiptop energy density, renewability, high purity and zero-polluting combustion byproduct (water), has received greater attention as an ideal energy carrier to reduce the dependence on traditional fossil energy [1-3]. Over various hydrogen generation pathways (in Fig. 1), water splitting via electrochemical approaches has been regarded as a low-cost, eco-friendly and sustainable industrial pathway for high-efficiency hydrogen conversion and storage[4,5]. So far, numerous experimental studies about high-speed and efficient hydrogen evolution have been gradually categorized into two classes: 1) identifying HER mechanisms in pursuit of more strategies for accelerating HER reaction rates, especially at a wide range of pH containing neutral and alkaline electrolyte environments (theoretically) [6-12]; 2) the discovery and design of new kinds of durable and high-activity HER electrocatalysts (experimentally) [13-18]. Considering the class 1), the key to understanding the HER mechanism is to explore the inherent relationship between the microscopic viewpoint of intermediate adsorbed states (including intermediate species and the triggered activation and adsorption energy change) and the macroscopic reaction rates [19]. Although the perplexing principle of the HER process in different pH conditions (mainly referring to acidic, neutral and alkaline conditions) is still under heated debate, especially considering which factor plays a predominant role including the source of proton donors[6,7], the interfacial H*-M (hydrogen-metal) band intensity with the changed activation barriers[8,9], the availability of surface sites and electron trapping states[10], Hupd[11], pzfc (the potential of zero free charge) with the changed reorganizational energy[12], there is a common consensus based on the competing relationship between the extra water dissociation and activation step and the hydrogen adsorption/desorption step. Specifically, from the perspective of catalyst design, several feasible strategies should be implemented to accomplish two goals (as Fig.2 depicts[20]): improving the reaction thermodynamics by lessening the activation barrier from dissociated water molecules (e.g. creating more oxophilic sites); promoting the reaction kinetics by tuning the H*-M interactions (e.g. modulating the electronic structures)[20,21]. Accordingly, no matter what the respective value of two goals are in HER, more micro-to-macro relationship can be established between the HER-related principles and the apparent HER activity by taking theoretically well-defined surface structures and electronic band levels of a certain electrocatalyst into account. Another class of research entails the real-world design of a certain kind of high-activity electrocatalysts. Although noble metals with their compounds, especially platinum (Pt), exhibit the optimum HER activity according to the Sabatier principles[22], their rare reserves and exorbitant prices largely restricts the large-scale hydrogen production. With a comparably low overpotential, a low Tafel slope and a moderate ΔGH* (not too big or too small) to Pt, various materials have adequate potentialities to replace the Pt-based HER catalysts, including chalcogenides[13,14], oxides[15], phosphides[16], nitrides[17] and carbides[18] ranging from bulk to nanoscale. Fully considering important structural or physical properties like surface area, crystallinity, porosity, thickness, electron conductivity and layered assemblies, molybdenum dichalcogenides (MoX2) have superior activity and long-term durability to defeat other structured catalyst materials[23-26]. Accordingly, the suitable choice of MoX2 help govern and regulate the apparent reactivity and kinetics of HER by designing a practically high-performance electrocatalyst with controlled surfaces and morphologies from a theoretically well-defined catalyst surface based on the HER principles. Consequently, our work aims to provide a comprehensive structure-activity analysis of MoX2-based electrocatalysts to present a clear mapping between the sluggish-rate-related HER energetics of two intermediate thermodynamic states (produced by two competing steps: the extra water dissociation step and hydrogen adsorption with interfacial H*-M interactions, as shown in Fig. 3 (b)[27,28]) and the practical design of a high-activity electrocatalyst. Based on the aforementioned correlations among hydrogen generation and two classes of viewpoints (simplified in ........... Purchase to read more.

Conclusion

The low concentration of proton donors in alkaline HER, subsequently leading to the extra water adsorption and dissociation steps, identifies the value of active sites (edge and basal sites) and crystal phases in lowering the extra activation barrier and/or optimizing the H* adsorption kinetics; in addition, the outstanding morphology-based features (surface area, thickness, defects, disorders and crystallinity) of layered molybdenum dichalcogenide families pinpoint the roles of active sites and phases for more interpretable and feasible structure-activity analysis. In this context, hydrothermal synthetic method is used to exhibit a clear mapping between the nanostructure/nanosurface design and the practical HER performance by adjusting key experimental parameters. In this article, MoX2 nanostructures in different species (X = S, Se, Te), the molar ratio of added reactants (the Se metal precursor and the NaBH4 reducing agency) and hydrothermal temperature are considered for the modulated structure and the optimized HER performance. The tunability of the hydrothermal method can be well confirmed with regard to its structure-activity relationship and the underlying mechanism. A system of MoX2-based samples delivery their excellent HER activity, stability and kinetics, with the optimal value of overpotential η, exchange current density j0, Tafel slope b and charge transfer resistance Rct, which are well tuned by these parameters above. For better comprehensions of the parameter-tunable structure-activity correlations, the role of active sites and phases are crucially highlighted. In detail, different chalcogenide species are indicative of different exposure of surface defects as active sites on nanoscale; the concentration of the added precursor/reductant determines the specific content of metallic 1T/1T’ phase by inducing a 2H-to-1T(1T’) conversion; hydrothermal temperatures regulates the phase and defect structure simultaneously by generating a controlled core/shell-like structure with mixed phases. Furthermore, the tunable procedures contribute to more revelation in the weigh of the roles of structural factors (edge sites, bulk conductivity for in-plane activation and phases). The crystal phase plays the predominant role as the phase transition also results in the altered densities of active sites and intrinsic activity of basal plane. To conclude, with higher tunability and scalability, the hydrothermal method can pave a novel path for the oriented, rational design of higher-activity transition-metal-based electrocatalysts and better understandings of the underlying design rules and mechanisms.

[1] Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Advancing the Electrochemistry of the Hydrogen Evolution Reaction through Combining Experiment and Theory. Angew. Chem. Int. Ed. 2015, 54, 52-65.
[1] Liu, Y.; Wu, J.; Hackenberg, K. P.; Zhang, J.; Wang, Y. M.; Yang, Y.; Keyshar, K.; Gu, J.; Ogitsu, T.; Vajtai, R. Self-Optimizing, Highly Surface-Active Layered Metal Dichalcogenide Catalysts for Hydrogen Evolution. Nat. Energy 2017, 2, 17127.
[2] Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science 2007, 317, 100-102.
[3] Gillis, R. J.; Al-Ali, K.; Green, W. H. Thermochemical Production of Hydrogen from Hydrogen Sulfide with Iodine Thermochemical Cycles. Int. J. Hydrog. Energy 2018, 43, 12939-12947.
[4] Zou, X.; Zhang, Y. Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting. Chem. Soc. Rev. 2015, 44, 5148-5180.
[5] Tarasevich, M. R.; Korchagin, O. V. Electrocatalysis and pH (a Review). Russ. J. Electrochem. 2013, 49, 600-618.
[6] Auinger, M.; Katsounaros, I.; Meier, J. C.; Klemm S. O.; Biedermann, P. U.; Topalov, A. A.; Rohwerdera, M.; Mayrhofer, K. J. Near-Surface Ion Distribution and Buffer Effects During Electrochemical Reactions. Phys. Chem. Chem. Phys. 2011, 13, 16384-16394.
[7] Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; Van Der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Improving the Hydrogen Oxidation Reaction Rate by Promotion of Hydroxyl Adsorption. Nature Chem. 2013, 5, 300-306.
[8] Zhu, S.; Qin, X.; Yao, Y.; Shao, M. pH-Dependent Hydrogen and Water Binding Energies on Platinum Surfaces as Directly Probed through Surface-Enhanced Infrared Absorption Spectroscopy. J. Am. Chem. Soc. 2020, 142, 8748-8754.
[9] Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. -C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Enhancing the Alkaline Hydrogen Evolution Reaction Activity through the Bifunctionality of Ni(OH)2/Metal Catalysts. Angew. Chem. Int. Ed. 2012, 51, 12495-12498.
[10] Cheng, T.; Wang, L.; Merinov, B. V.; Goddard III, W. A. Explanation of Dramatic pH-Dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High pH. J. Am. Chem. Soc. 2018, 140, 7787-7790.
[11] Yang, X.; Nash, J.; Oliveira, N.; Yan, Y.; Xu, B. Understanding the pH Dependence of Underpotential Deposited Hydrogen on Platinum. Angew. Chem. Int. Ed. 2019, 58, 17718-17723.
[12] Wang, R.; Yan, J.; Zu, M.; Yang, S.; Cai, X.; Gao, Q.; Fang, Y.; Zhang, S. Facile Synthesis of Interlocking g-C3N4/CdS Photoanode for Stable Photoelectrochemical Hydrogen Production. Electrochim. Acta 2018, 279, 74-83.
[13] Shi, X.; Fields, M.; Park, J.; McEnaney, J. M.; Yan, H.; Zhang, Y.; Tsai, C.; Jaramillo, T. F.; Sinclair, R.; Norskov, J. K.; Zheng, X. Rapid Flame Doping of Co to WS2 for Efficient Hydrogen Evolution. Energy Environ. Sci. 2018, 11, 2270-2277.
[14] Wang, L.; Tsang, C.; Liu, W.; Zhang, X.; Zhang, K.; Ha, E.; Kwok, W. M.; Park, J. H.; Lee, L. Y. S.; Wong, K. Y. Disordered Layers on WO3 Nanoparticles Enable Photochemical Generation of Hydrogen from Water. J. Mater. Chem. A 2019, 7, 221-227.
[15] Kanda, Y.; Kawanishi, K.; Tsujino, T.; Al-otaibi, A.; Uemichi, Y. Catalytic Activities of Noble Metal Phosphides for Hydrogenation and Hydrodesulfurization Reactions. Catalysts 2018, 8, 160.
[16] Miao, J.; Lang, Z.; Zhang, X.; Kong, W.; Peng, O.; Yang, Y.; Wang, S.; Cheng, J.; He, T.; Amini, A.; Wu, Q.; Zheng, Z.; Tang, Z.; Cheng, C. Polyoxometalate-Derived Hexagonal Molybdenum Nitrides (MXenes) Supported by Boron, Nitrogen Codoped Carbon Nanotubes for Efficient Electrochemical Hydrogen Evolution from Seawater. Adv. Funct. Mater. 2019, 29, 1970046.
[17] Kou, Z.; Wang, T.; Wu, H.; Zheng, L.; Mu, S.; Pan, Z.; Lyu, Z.; Zang, W.; Pennycook, S. J.; Wang, J. Twinned Tungsten Carbonitride Nanocrystals Boost Hydrogen Evolution Activity and Stability. Small 2019, 15, 1900248.
[18] Wang, X.; Zheng, Y.; Sheng, W.; Xu, Z. J.; Jaroniec, M.; Qiao, S. Z. Strategies for Design of Electrocatalysts for Hydrogen Evolution under Alkaline Conditions. Mater. Today 2020, 36, 125-138.
[19] Jiao, Y.; Zheng, Y.; Davey, K.; Qiao, S. Z. Activity Origin and Catalyst Design Principles for Electrocatalytic Hydrogen Evolution on Heteroatom-Doped Graphene. Nat. Energy 2016, 1, 16130.
[20] Skúlason, E.; Jónsson, H. Atomic Scale Simulations of Heterogeneous Electrocatalysis: Recent Advances. Adv. Phys. 2017, 2, 481-495.
[21] Parsons, R. The Rate of Electrolytic Hydrogen Evolution and the Heat of Adsorption of Hydrogen. Trans. Faraday Soc. 1958, 54, 1053-1063.
[22] Wang, R.; Han, J.; Zhang, X.; Song, B. Synergistic Modulation in MX2 (where M = Mo or W or V, and X = S or Se) for an Enhanced Hydrogen Evolution Reaction. J. Mater. Chem. A 2018, 6, 21847-21858.
[23] Deng, S.; Yang, F.; Zhang, Q.; Zhong, Y.; Zeng, Y.; Lin, S.; Wang, X.; Lu, X.; Wang, C.-Z.; Gu, L.; Xia, X.; Tu, J. Phase Modulation of (1T-2H)-MoSe2/TiC-C Shell/Core Arrays via Nitrogen Doping for Highly Efficient Hydrogen Evolution Reaction. Adv. Mater. 2018, 30, 1802223.
[24] Vikraman, D.; Akbar, K.; Hussain, S.; Yoo, G.; Jang, J.-Y.; Chun, S.-H.; Jung, J.; Park, H. J. Direct Synthesis of Thickness-Tunable MoS2 Quantum Dot Thin Layers: Optical, Structural and Electrical Properties and Their Application to Hydrogen Evolution. Nano Energy 2017, 35, 101-114.
[25] Guo, W.; Chen, Y.; Wang, L.; Xu, J.; Zeng, D.; Peng, D. -L. Colloidal Synthesis of MoSe2 Nanonetworks and Nanoflowers with Efficient Electrocatalytic Hydrogen-Evolution Activity. Electrochim. Acta 2017, 231, 69-76.
[26] Wei, J.; Zhou, M.; Long, A.; Xue, Y.; Liao, H.; Wei, C.; Xu, Z. J. Heterostructured Electrocatalysts for Hydrogen Evolution Reaction Under Alkaline Conditions. Nano-Micro Lett. 2018, 10, 75.
[27] Zheng, Y.; Jiao, Y.; Zhu, Y.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. J. Am. Chem. Soc. 2016, 138, 16174-16181.
[28] Zhang, B.; Liu, J.; Wang, J.; Ruan, Y.; Ji, X.; Xu, K.; Chen, C.; Wan, H.; Miao, L.; Jiang, J. Interface Engineering: the Ni(OH)2/MoS2 Heterostructure for Highly Efficient Alkaline Hydrogen Evolution. Nano Energy 2017, 37, 74-80.
[29] Zhen, C.; Zhang, B.; Zhou, Y.; Du, Y.; Xu, P. Hydrothermal Synthesis of Ternary MoS2xSe2(1-x) Nanosheets for Electrocatalytic Hydrogen Evolution. Inorg. Chem. Front. 2018, 5, 1386-1390.
[30] Gao, M.; Xu, Y.; Jiang, J.; Yu, S. Nanostructured Metal Chalcogenides: Synthesis, Modification, and Applications in Energy Conversion and Storage Devices. Chem. Soc. Rev. 2013, 42, 2986-3017.
[31] Liu, Z.; Gao, Z.; Liu, Y.; Xia, M.; Wang, R.; Li, N. Heterogeneous Nanostructure Based on 1T-Phase MoS2 for Enhanced Electrocatalytic Hydrogen Evolution. ACS Appl. Mater. Interfaces 2017, 9, 25291-25297.
[32] Fu, Q.; Han, J.; Wang, X.; Xu, P.; Yao, T.; Zhong, J.; Zhong, W.; Liu, S.; Gao, T.; Zhang, Z.; Xu, L.; Song, B. 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. Adv. Mater. 2021, 33, 1907818.
[33] Strmcnik, D.; Lopes, P. P.; Genorio, B.; Stamenkovic, V. R.; Markovic, N. M. Design Principles for Hydrogen Evolution Reaction Catalyst Materials. Nano Energy 2016, 29, 29-36.
[34] Durst, J.; Siebel, A.; Simon, C.; Hasche, F.; Herranz, J.; Gasteiger, H. A. New Insights into the Electrochemical Hydrogen Oxidation and Evolution Reaction Mechanism. Energy Environ. Sci. 2014, 7, 2255-2260.
[35] Wei, C.; Sun, Y.; Scherer, G. G.; Fisher, A. C.; Sherburne, M.; Ager, J. W.; Xu, Z. J. Surface Composition Dependent Ligand Effect in Tuning the Activity of Nickel-Copper Bimetallic Electrocatalysts toward Hydrogen Evolution in Alkaline. J. Am. Chem. Soc. 2020, 142, 7765-7775.
[36] Wang, X.; Xu, C.; Jaroniec, M.; Zheng, Y.; Qiao, S. -Z. Anomalous Hydrogen Evolution Behavior in High-pH Environment Induced by Locally Generated Hydroniumions. Nat. Commun. 2019, 10, 4876.
[37] Cheng, T.; Wang, L.; Merinov, B. V.; Goddard, W. A. Explanation of Dramatic pH-Dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High pH. J. Am. Chem. Soc. 2018, 140, 7787-7790.
[38] Ruqia, B.; Choi, S. I. Pt and Pt-Ni(OH)2 Electrodes for the Hydrogen Evolution Reaction in Alkaline Electrolytes and Their Nanoscaled Electrocatalysts. ChemSusChem 2018, 11, 2643-2653.
[39] Feng, X. J.; Wu, J. Q.; Tong, Y. X.; Li, G. R. Efficient Hydrogen Evolution on Cu Nanodots-Decorated Ni3S2 Nanotubes by Optimizing Atomic Hydrogen Adsorption and Desorption. J. Am. Chem. Soc. 2018, 140, 610-617.
[40] Voiry, D.; Yang, J.; Chhowalla, M. Recent Strategies for Improving the Catalytic Activity of 2D TMD Nanosheets toward the Hydrogen Evolution Reaction. Adv. Mater. 2016, 28, 6197-6206.
[41] Gushchin, A. L.; Laricheva, Y. A.; Sokolov, M. N.; Llusar, R. Tri-and Tetranuclear Molybdenum and Tungsten Chalcogenide Clusters: on the Way to New Materials and Catalysts. Russ. Chem. Rev. 2018, 87, 670-706.
[42] Zhong, W.; Xiao, B.; Lin, Z.; Wang, Z.; Huang, L.; Shen, S.; Zhang, Q.; Gu, L. RhSe2: a Superior 3D Electrocatalyst with Multiple Active Facets for Hydrogen Evolution Reaction in Both Acid and Alkaline Solutions. Adv. Mater. 2021, 33, 2007894.
[43] McGlynn, J. C.; Cascallana-Matías, I.; Fraser, J. P.; Roger, I.; McAllister, J.; Miras, H. N.; Symes, M. D.; Ganin, A. Y. Molybdenum Ditelluride Rendered into an Efficient and Stable Electrocatalyst for the Hydrogen Evolution Reaction by Polymorphic Control. Energy Technol. 2018, 6, 345-350.
[44] Bhat, K. S.; Nagaraja, H. S. Performance Evaluation of Molybdenum Dichalcogenide (MoX2; X = S, Se, Te) Nanostructures for Hydrogen Evolution Reaction. Int. J. Hydrog. Energy 2019, 44, 17878-17886.
[45] Wang, H.; Yuan, H.; Hong, S. S.; Li, Y.; Cui, Y. Physical and Chemical Tuning of Two-Dimensional Transition Metal Dichalcogenides. Chem. Soc. Rev. 2015, 44, 2664-2680.
[46] Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. J. Am. Chem. Soc. 2005, 127, 5308-5309.
[47] Luo, Z.; Ouyang, Y.; Zhang, H.; Xiao, M.; Ge, J.; Jiang, Z.; Wang, J.; Tang, D.; Cao, X.; Liu, C.; Xing, W. Chemically Activating MoS2 via Spontaneous Atomic Palladium Interfacial Doping towards Efficient Hydrogen Evolution. Nat. Commun. 2018, 9, 2120.
[48] (a) Yu, Y.; Huang, S. -Y.; Li, Y.; Steinmann, S. N.; Yang, W.; Cao, L. Layer-Dependent Electrocatalysis of MoS2 for Hydrogen Evolution. Nano Lett. 2014, 14, 553-558.; (b) Janik, J. M.; McCrum, I. T.; Koper, M. T. M. On the Presence of Surface Bound Hydroxyl Species on Polycrystalline Pt Electrodes in the “Hydrogen Potential Region” (0-0.4 V-RHE). J. Catal. 2018, 367, 332-337; (c) Qian, Z.; Jiao, L.; Xie, L. Phase Engineering of Two-Dimensional Transition Metal Dichalcogenides. Chin. J. Chem. 2020, 38, 753-760.
[49] Khossossi, N.; Singh, D.; Ainane, A.; Ahuja, R. Recent Progress of Defect Chemistry on 2D Materials for Advanced Battery Anodes. Chem. Asian J. 2020, 15, 3390-3404.
[50] Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. -Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331, 568.
[51] Kong, D.; Wang, H.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers. Nano Lett. 2013, 13, 1341-1347.
[52] Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets. J. Am. Chem. Soc. 2013, 135, 10274-10277.
[53] Vattikuti, S. P.; Devarayapalli, K. C.; Nagajyothi, P. C.; Shim, J. Microwave Synthesized Dry Leaf-Like Mesoporous MoSe2 Nanostructure as an Efficient Catalyst for Enhanced Hydrogen Evolution and Supercapacitor Applications. Microchem. J. 2020, 153, 104446.
[54] Lei, Z.; Xu, S.; Wu, P. Ultra-Thin and Porous MoSe2 Nanosheets: Facile Preparation and Enhanced Electrocatalytic Activity towards the Hydrogen Evolution Reaction. Phys. Chem. Chem. Phys. 2016, 18, 70-74.
[55] Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science 2007, 317, 100-102.
[56] Nguyen, T. P.; Choi, S.; Jeon, J. M.; Kwon, K. C.; Jang, H. W.; Kim, S. Y. Transition Metal Disulfide Nanosheets Synthesized by Facile Sonication Method for the Hydrogen Evolution Reaction. J. Phys. Chem. C 2016, 120, 3929-3935.
[57] Ambrosi, A.; Sofer, Z.; Pumera, M. Lithium Intercalation Compound Dramatically Influences the Electrochemical Properties of Exfoliated MoS2. Small 2015, 11, 605-612.
[58] Attanayake, N. H.; Thenuwara, A. C.; Patra, A.; Aulin, Y. V.; Tran, T. M.; Chakraborty, H.; Borguet, E.; Klein, M. L.; Perdew, J. P.; Strongin, D. R. Effect of Intercalated Metals on the Electrocatalytic Activity of 1T-MoS2 for the Hydrogen Evolution Reaction. ACS Energy Lett. 2017, 3, 7-13.
[59] Lin, S.; Kuo, J. Activating and Tuning Basal Planes of MoO2, MoS2, and MoSe2 for Hydrogen Evolution Reaction. Phys. Chem. Chem. Phys. 2015, 17, 29305-29310.
[60] Ouyang, Y.; Ling, C.; Chen, Q.; Wang, Z.; Shi, L.; Wang, J. Activating Inert Basal Planes of MoS2 for Hydrogen Evolution Reaction through the Formation of Different Intrinsic Defects. Chem. Mater. 2016, 28, 4390-4396.
[61] Vasu, K.; Meiron, O. E.; Enyashin, A. N.; Bar-Ziv, R.; Bar-Sadan, M. Effect of Ru Doping on the Properties of MoSe2 Nanoflowers. J. Phys. Chem. C 2019, 123, 1987-1994.
[62] Voiry, D.; Mohiteb, A.; Chhowalla, M. Phase Engineering of Transition Metal Dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702-2712.
[63] Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[64] Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets. J. Am. Chem. Soc. 2013, 135, 10274-10277.
[65] Wang, D.; Zhang, X.; Bao, S.; Zhang, Z.; Fei, H.; Wu, Z. Phase-Engineering of Multiphasic 1T/2H MoS2 Catalyst for Highly Efficient Hydrogen Evolution. J. Mater. Chem. A 2017, 5, 2681-2688.
[66] Wang, H.; Wang, X.; Wang, L.; Wang, J.; Jiang, D.; Li, G.; Zhang, Y.; Zhong, H.; Jiang, Y. Phase Transition Mechanism and Electrochemical Properties of Nanocrystalline MoSe2 as Anode Materials for the High Performance Lithium-Ion Battery. J. Phys. Chem. C 2015, 119, 10197-10205.
[67] Li, X.; Sun, M.; Cheng, S.; Ren, X.; Zang, J.; Xu, T.; Wei, X.; Li, S,; Chen, Q.; Shan, C. Crystallographic-Orientation Dependent Li Ion Migration and Reactions in Layered MoSe2. 2D Mater. 2019, 6, 035027.
[68] Li, H.; Tsai, C.; Koh, A. L.; Cai, L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F.; Nørskov, J. K.; Zheng, X. Activating and Optimizing MoS2 Basal Planes for Hydrogen Evolution through the Formation of Strained Sulphur Vacancies. Nat. Mater. 2016, 15, 48-53.
[69] Duerloo, K. A. N.; Li, Y.; Reed, E. J. Structural Phase Transitions in Two-Dimensional Mo- and W- Dichalcogenide Monolayers. Nat. Ccommun. 2014, 5, 4214.
[70] Lee, J.; Kim, C.; Choi, K.; Seo, J.; Choi, Y.; Choi, W.; Kim, Y. -M.; Jeong, H.; Lee, J. H.; Kim, G.; Park, H. In-situ Coalesced Vacancies on MoSe2 Mimicking Noble Metal: Unprecedented Tafel Reaction in Hydrogen Evolution. Nano Energy 2019, 63, 103846.
[71] Tan, C.; Luo, Z.; Chaturvedi, A.; Cai, Y.; Du, Y.; Gong, Y.; Huang, Y.; Lai, Z.; Zhang, X.; Zheng, L.; Qi, X.; Goh, M. H.; Wang, J.; Han, S.; Wu, X. -J.; Gu, L.; Kloc, C.; Zhang, H. Preparation of High-Percentage 1T-Phase Transition Metal Dichalcogenide Nanodots for Electrochemical Hydrogen Evolution. Adv. Mater. 2018, 30, 1705509.
[72] Cai, L.; Cheng, W.; Yao, T.; Huang, Y.; Tang, F.; Liu, Q.; Liu, W.; Sun, Z.; Hu, F.; Jiang, Y.; Yan, W; Wei, S. High Content Metallic 1T Phase in MoS2-Based Electrocatalyst for Efficient Hydrogen Evolution. J. Phys. Chem. C 2017, 121, 15071-15077.
[73] He, Y.; Boubeche, M.; Zhou, Y.; Yan, D.; Zeng, L.; Wang, X.; Yan, K.; Luo, H. Topologically Nontrivial 1T’-MoTe2 as Highly Efficient Hydrogen Evolution Electrocatalyst. J. Phys. Mater. 2020, 4, 014001.
[74] Chen, M.; Zhu, L.; Chen, Q.; Miao, N.; Si, C.; Zhou, J.; Sun, Z. Quantifying the Composition Dependency of the Ground-State Structure, Electronic Property and Phase-Transition Dynamics in Ternary Transition-Metal-Dichalcogenide Monolayers. J. Mater. Chem. C 2020, 8, 721-733.
[75] Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Lett. 2013, 13, 6222-6227.
[76] Xie, J.; Qi, J.; Lei, F.; Xie, Y. Modulation of Electronic Structures in Two-Dimensional Electrocatalysts for the Hydrogen Evolution Reaction. Chem. Commun. 2020, 56, 11910-11930.
[77] Xie, J.; Liu, W.; Zhang, X.; Guo, Y.; Gao, L.; Lei, F.; Tang, B.; Xie, Y. Constructing Hierarchical Wire-On-Sheet Nanoarrays in Phase-Regulated Cerium-Doped Nickel Hydroxide for Promoted Urea Electro-Oxidation. ACS Mater. Lett. 2019, 1, 103-110.
[78] Hu, X.; Zhang, Q.; Yu, S. Theoretical Insight into the Hydrogen Adsorption on MoS2 (MoSe2) Monolayer as a Function of Biaxial Strain/External Electric Field. Appl. Surf. Sci. 2019, 478, 857-865.
[79] Yin, Y.; Han, J.; Zhang, Y.; Zhang, X.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X.; Wang, Y.; Zhang, Z.; Zhang, P.; Cao, X.; Song, B.; Jin, S. Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets. J. Am. Chem. Soc. 2016, 13, 7965-7972.
[80] Joo, J.; Kim, T.; Lee, J.; Choi, S. I.; Lee, K. Morphology-Controlled Metal Sulfides and Phosphides for Electrochemical Water Splitting. Adv. Mater. 2019, 31, 1806682.
[81] Staszak-Jirkovský, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. -C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G.; Markovic, N. M. Design of Active and Stable Co-Mo-Sx Chalcogels as pH-Universal Catalysts for the Hydrogen Evolution Reaction. Nat. Mater. 2016, 15, 197-203.
[82] Ge, Y.; Gao, S. -P.; Dong, P.; Baines, R.; Ajayan, P. M.; Ye, M.; Shen, J. Insight into the Hydrogen Evolution Reaction of Nickel Dichalcogenide Nanosheets: Activities Related to Non-Metal Ligands. Nanoscale 2017, 9, 5538-5544.
[83] Rasmussen, F. A.; Thygesen, K. S. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. J. Phys. Chem. C 2015, 119, 13169-13183.
[84] De Silva, U.; Masud, J.; Zhang, N.; Hong, Y.; Liyanage, W. P. R.; Asle Zaeem, M.; Nath, M. Nickel Telluride as a Bifunctional Electrocatalyst for Efficient Water Splitting in Alkaline Medium. J. Mater. Chem. 2018, 6, 7608-7822.
[85] Kosmala, T.; Coy Diaz, H.; Komsa, H. P.; Ma, Y.; Krasheninnikov, A. V.; Batzill, M.; Agnoli, S. Metallic Twin Boundaries Boost the Hydrogen Evolution Reaction on the Basal Plane of Molybdenum Selenotellurides. Adv. Energy Mater. 2018, 8, 1800031.
[86] Seok, J.; Lee, J. H.; Bae, D.; Ji, B.; Son, Y. W.; Lee, Y. H.; Yang, H.; Cho, S. Hybrid Catalyst with Monoclinic MoTe2 and Platinum for Efficient Hydrogen Evolution. APL Mater. 2019, 7, 071118.
[87] Yoo, D.; Kim, M.; Jeong, S.; Han, J.; Cheon, J. Chemical Synthetic Strategy for Single-Layer Transition-Metal Chalcogenides. J. Am. Chem. Soc. 2014, 136, 14670-14673.
[88] Balasingam, S. K.; Lee, J. S.; Jun, Y. Few-Layered MoSe2 Nanosheets as an Advanced Electrode Material for Supercapacitors. Dalton Trans. 2015, 44, 15491-15498.
[89] Jiang, M.; Zhang, J.; Wu, M.; Jian, W.; Xue, H.; Ng, T. -W.; Lee, C. -S.; Xu, J. Synthesis of 1T-MoSe2 Ultrathin Nanosheets with an Expanded Interlayer Spacing of 1.17 nm for Efficient Hydrogen Evolution Reaction. J. Mater. Chem. A 2016, 4, 14949-14953.
[90] Zhou, R.; Wang, H.; Chang, J.; Yu, C.; Dai, H.; Chen, Q.; Zhou, J.; Yu, H.; Sun, G.; Huang, W. Ammonium Intercalation Induced Expanded 1T-Rich Molybdenum Diselenides for Improved Lithium Ion Storage. ACS Appl. Mater. Interfaces 2021, 13, 17459-17466.
[91] Yi, Y.; Sun, Z.; Li, C.; Tian, Z.; Lu, C.; Shao, Y.; Li, J.; Sun, J.; Liu, Z. Designing 3D Biomorphic Nitrogen-Doped MoSe2/Graphene Composites toward High-Performance Potassium-Ion Capacitors. Adv. Funct. Mater. 2020, 30, 1903878.
[92] Bhat, K. S.; Nagaraja, H. S. Performance Evaluation of Molybdenum Dichalcogenide (MoX2; X= S, Se, Te) Nanostructures for Hydrogen Evolution Reaction. Int. J. Hydrog. Energy 2019, 44, 17878-17886.
[93] Hu, C.; Zhang, L.; Zhao, Z. J.; Luo, J.; Shi, J.; Huang, Z.; Gong, J. Edge Sites with Unsaturated Coordination on Core-Shell Mn3O4@MnxCo3xO4 Nanostructures for Electrocatalytic Water Oxidation. Adv. Mater. 2017, 29, 1701820.
[94] Chia, X.; Pumera, M. Inverse Opal-Like Porous MoSex Films for Hydrogen Evolution Catalysis: Overpotential-Pore Size Dependence. ACS Appl. Mater. Interfaces 2018, 10, 4937-4945.
[95] Bhat, K. S.; Barshilia, H. C.; Nagaraja, H. S. Porous Nickel Telluride Nanostructures as Bifunctional Electrocatalyst towards Hydrogen and Oxygen Evolution Reaction. Int. J. Hydrog. Energy 2017, 42, 24645-24655.
[96] Ndala, Z.; Shumbula, N.; Nkabinde, S.; Kolokoto, T.; Nchoe, O.; Shumbula, P.; Tetana, Z. N.; Linganiso, E. C.; Gqoba, S. S.; Moloto, N. Evaluating the Effect of Varying the Metal Precursor in the Colloidal Synthesis of MoSe2 Nanomaterials and Their Application as Electrodes in the Hydrogen Evolution Reaction. Nanomaterials 2020, 10, 1786.
[97] Kwon, I. S.; Kwak, I. H.; Debela, T. T.; Abbas, H. G.; Park, Y. C.; Ahn, J. P.; Park, J.; Kang, H. S. Se-Rich MoSe2 Nanosheets and Their Superior Electrocatalytic Performance for Hydrogen Evolution Reaction. ACS Nano 2020, 14, 6295-6304.
[98] Najafi, L.; Bellani, S.; Oropesa-Nunez, R.; Ansaldo, A.; Prato, M.; Del Rio Castillo, A. E.; Bonaccorso, F. Engineered MoSe2-Based Heterostructures for Efficient Electrochemical Hydrogen Evolution Reaction. Adv. Energy Mater. 2018, 8, 1703212.
[99] Xia, B.; Wang, T.; Jiang, X.; Zhang, T.; Li, J.; Xiao, W.; Xi, P.; Gao, D.; Xue, D.; Ding, J. Ar2+ Beam Irradiation-Induced Multivancancies in MoSe2 Nanosheet for Enhanced Electrochemical Hydrogen Evolution. ACS Energy Lett. 2018, 3, 2167-2172.
[100] Tang, Q. Tuning the Phase Stability of Mo-based TMD Monolayers through Coupled Vacancy Defects and Lattice Strain. J. Mater. Chem. C 2018, 6, 9561-9568.
[101] Yin, Y.; Zhang, Y.; Gao, T.; Yao, T.; Zhang, X.; Han, J.; Wang, X.; Zhang, Z.; Xu, P.; Zhang, P.; Cao, X.; Song, B.; Jin, S. Synergistic Phase and Disorder Engineering in 1T-MoSe2 Nanosheets for Enhanced Hydrogen-Evolution Reaction. Adv. Mater. 2017, 29, 1700311.
[102] Zhang, H.; Yu, L.; Chen, T.; Zhou, W.; Lou, X. W. Surface Modulation of Hierarchical MoS2 Nanosheets by Ni Single Atoms for Enhanced Electrocatalytic Hydrogen Evolution. Adv. Funct. Mater. 2018, 28, 1807086.
[103] Yu, C.; Cao, Z.; Chen, S.; Wang, S.; Zhong, H. Promoting the Hydrogen Evolution Performance of 1T-MoSe2-Se: Optimizing the Two-Dimensional Structure of MoSe2 by Layered Double Hydroxide Limited Growth. Appl. Surf. Sci. 2020, 509, 145364.
[104] Yi, J.; Li, H.; Gong, Y.; She, X.; Song, Y.; Xu, Y.; Deng, J.; Yuan, S.; Xu, H.; Li, H. Phase and Interlayer Effect of Transition Metal Dichalcogenide Cocatalyst toward Photocatalytic Hydrogen Evolution: the Case of MoSe2. Appl. Catal. B-Environ. 2019, 243, 330-336.
[105] Zhang, Y.; Gong, Q.; Li, L.; Yang, H.; Li, Y.; Wang, Q. MoSe2 Porous Microspheres Comprising Monolayer Flakes with High Electrocatalytic Activity. Nano Res. 2015, 8, 1108-1115.
[106] Duan, X.; Wang, C.; Pan, A.; Yu, R.; Duan, X. Two-Dimensional Transition Metal Dichalcogenides as Atomically Thin Semiconductors: Opportunities and Challenges. Chem. Soc. Rev. 2015, 44, 8859-8876.
[107] Takahashi, Y.; Nakayasu, Y.; Iwase, K.; Kobayashi, H.; Honma, I. Supercritical Hydrothermal Synthesis of MoS2 Nanosheets with Controllable Layer Number and Phase Structure. Dalton Trans. 2020, 49, 9377-9384.
Zhang, J.; Wang, T.; Liu, P.; Liu, Y.; Ma, J.; Gao, D. Enhanced Catalytic Activities of Metal-Phase-Assisted 1T@2H-MoSe2 Nanosheets for Hydrogen Evolution. Electrochim. Acta 2016, 217, 181-186.

Abstract
Introduction
Conclusion
References

All Products

bottom of page