top of page
ORCID_iD.svg.png

Locked

Tphysicsletters/6879/10/1490/3486tpl/Protoplanetary disks in Ks-band total intensity and polarized light

Theoretical Physics Letters.png
Received 14 August 2023, Revised 28 September, Accepted 04 October 2023

Friday, October 13, 2023 at 12:15:00 PM UTC

Request Open

Article Rating by Publisher
10
Exp. Astrophysics
Article Rating by Readers
10
Premium

Protoplanetary disks in Ks-band total intensity and polarized light

Bin B. Ren (任彬) iD ⋆⋆1, 2, 3 Myriam Benisty iD 1, 2 Christian Ginski iD 4 Ryo Tazaki iD 2 Nicole L. Wallack iD 5 Julien Milli iD 2 Antonio Garufi iD 6 Jaehan Bae iD 7 Stefano Facchini iD 8 François Ménard iD 2 Paola Pinilla iD 9 C. Swastik iD 10, Richard Teague iD 11, and Zahed Wahhaj iD 12 _________________________________________________________________ 1 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Bd de l’Observatoire, CS 34229, 06304 Nice cedex 4, France; bin.ren@oca.eu 2 Université Grenoble Alpes, CNRS, Institut de Planétologie et d’Astrophysique (IPAG), F-38000 Grenoble, France 3 Department of Astronomy, California Institute of Technology, MC 249-17, 1200 E California Blvd, Pasadena, CA 91125, USA 4 School of Natural Sciences, University of Galway, University Road, H91 TK33 Galway, Ireland 5 Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA 6 INAF, Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze, Italy 7 Department of Astronomy, University of Florida, Gainesville, FL 32611, USA 8 Dipartimento di Fisica, Universitá degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy 9 Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK 10 Indian Institute of Astrophysics, Koramangala 2nd Block, Bangalore 560034, India 11 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 12 European Southern Observatory, Alonso de Córdova 3107, Vitacura Casilla 19001, Santiago, Chile

Theoretical Physics Letters

2023 ° 03(10) ° 0631-3486

https://www.wikipt.org/tphysicsletters

Total citation received before and after publication.

Citation data

We thank the anonymous referee for their prompt and constructive comments. We thank Valentin Christiaens for comments on the manuscript. B.B.R. thanks Yinzi Xin for discussions on wavefront sensing in high-contrast imaging, Jie Ma on convolution effects, and Laurent Pueyo for support. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programs 0103.C0470 , 105.209E , 105.20HV , 105.20JB , 106.21HJ , and 108.22EE . For the archival data in Sect. 5.3, based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programs 60.A-9389 , 60.A-9800 , 095.C-0273 , 096.C-0248 , 096.C-0523 , 097.C0523 , 097.C-0702 , 097.C-0902 , 297.C-5023 , 198.C-0209 , 098.C-0486 , 098.C-0760 , 099.C-0147 , 0100.C-0452 , 0100.C-0647 , 0101.C-0464 , 0101.C0867 , 0102.C-0162 , 0102.C-0453 , 0102.C-0778 , 1104.C-0415 , 0104.C-0472 , 0104.C-0850 , 109.23BC , and 111.24GG . This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (PROTOPLANETS, grant agreement No. 101002188). This project has received funding from the European Union’s Horizon Europe research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101103114. This work has made use of the High Contrast Data Centre, jointly operated by OSUG/IPAG (Grenoble), PYTHEAS/LAM/CeSAM (Marseille), OCA/Lagrange (Nice), Observatoire de Paris/LESIA (Paris), and Observatoire de Lyon/CRAL, and supported by a grant from Labex OSUG@2020 (Investissements d’avenir – ANR10 LABX56). This research has made use of the SIMBAD database (Wenger et al. 2000), operated at CDS, Strasbourg, France. This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France (DOI: 10.26093/cds/vizier). The original description of the VizieR service was published in A&AS 143, 23 (Ochsenbein et al. 2000). The VizieR photometry tool is developed by Anne-Camille Simon and Thomas Boch. This research has made use of the Jean-Marie Mariotti Center SearchCal service4 co-developed by LAGRANGE and IPAG.

Unlock Only

Changeover the Schrödinger Equation

This option will drive you towards only the selected publication. If you want to save money then choose the full access plan from the right side.

Unlock all

Get access to entire database

This option will unlock the entire database of us to you without any limitations for a specific time period.
This offer is limited to 100000 clients if you make delay further, the offer slots will be booked soon. Afterwards, the prices will be 50% hiked.

Newsletters
Abstract
Diverse morphology in protoplanetary disks can result from planet-disk interaction, suggesting the presence of forming planets. Characterizing disks can inform the formation environments of planets. To date, most imaging campaigns have probed the polarized light from disks, which is only a fraction of the total scattered light and not very sensitive to planetary emission. Aims. We aim to observe and characterize protoplanetary disk systems in the near-infrared in both polarized and total intensity light, to carry out an unprecedented study of the dust scattering properties of disks, as well as of any possible planetary companions. Methods. Using the star-hopping mode of the SPHERE instrument at the Very Large Telescope, we observed 29 young stars hosting protoplanetary disks and their reference stars in the Ks-band polarized light. We extracted disk signals in total intensity by removing stellar light using the corresponding reference star observations, by adopting the data imputation concept with sequential non-negative matrix factorization (DI-sNMF). For well-recovered disks in both polarized and total intensity light, we parameterized the polarization fraction phase functions using scaled beta distribution. We investigated the empirical DI-sNMF detectability of disks using logistic regression. For systems with SPHERE data in Y-/J-/H-band, we summarized their polarized color at ≈90◦ scattering angle. Results. We obtained high-quality disk images in total intensity for 15 systems and in polarized light for 23 systems. Total intensity detectability of disks primarily depends on host star brightness, which determines adaptive-optics control ring imagery and thus stellar signals capture using DI-sNMF. The peak of polarization fraction tentatively correlates with the peak scattering angle, which could be reproduced using certain composition for compact dust, yet more detailed modeling studies are needed. Most of disks are blue in polarized J − Ks color, and the fact that they are relatively redder as stellar luminosity increases indicates larger scatterers. Conclusions. High-quality disk imagery in both total intensity and polarized light allows for disk characterization in polarization fraction. The combination of them reduces the confusion between disk and planetary signals.

Introduction
In the past 10 years, the advent of high angular resolution facilities enabled the detection of numerous disk substructures, such as rings, spirals, dust-depleted cavities, in the near-infrared scattered light (e.g., Benisty et al. 2015, 2023; Wagner et al. 2018; Shuai et al. 2022) and in the (sub-)millimeter/mm regime (e.g., Francis & van der Marel 2020; Long et al. 2022), indicating the ubiquity of substructures in large, bright disks (Bae et al. 2023). These substructures can be interpreted as evidence of planetdisk interactions, suggesting the presence of an underlying yetundetected population of young exoplanets (e.g., Dong et al. 2012). Additional support for this interpretation recently came from the detection of local velocity deviations in the gaseous outer disk velocity field probed with ALMA (e.g., Pinte et al. 2018; Teague et al. 2018; Pinte et al. 2020; Wölfer et al. 2023; Stadler et al. 2023). Scattered light surveys also pointed out a large fraction of infrared-faint disks, that appear more compact and featureless in scattered light because of self-shadowing effects (e.g., Garufi et al. 2022). These disks however often host substructures in the sub-millimeter (e.g., Long et al. 2018) that could be due to planets. The presence of massive planets inside cavities was also suggested in transition disks (disks with depleted inner cavities; Bae et al. 2019) and confirmed in at least one system, PDS 70, with the detection of two protoplanets (Keppler et al. 2018; Haffert et al. 2019). The range of plausible mass for the companion(s) in these disks is however quite large, as eccentric stellar companion could be sculpting the cavity (e.g., Calcino et al. 2019) as found in the HD 142527 system (Balmer et al. 2022). In that specific case, the companion is also leading to a misaligned inner disk, which casts a shadow on the outer disk (Price et al. 2018). Such misalignments were found in at least 6 transition disks (Bohn et al. 2022). Whether these features are of planetary or stellar nature, the search for the perturbers, which are responsible for all the observed disk substructures (e.g., Asensio-Torres et al. 2021; Cugno et al. 2023), is of prime importance to understand the formation and evolution of planetary systems. The detection of these perturbers would offer crucial observational evidence to test planet-disk interaction theories (e.g., Dong et al. 2015) and constrain the overall evolution of a planetary system (Bae et al. 2019). However, directly imaging planets embedded in bright and highly structured disks is very challenging with current instruments. Until now, all claims but PDS 70 still require confirmation (e.g., Kraus & Ireland 2012; Sallum et al. 2015; Quanz et al. 2015; Reggiani et al. 2018; Wagner et al. 2019; Boccaletti et al. 2020; Uyama et al. 2020; Currie et al. 2022; Hammond et al. 2023; Law et al. 2023; Wagner et al. 2023). To observe exoplanetary systems with high-contrast imaging, observation strategies including angular differential imaging (ADI; Marois et al. 2006, where parallactic angle diversity of observations is used to remove star light) have enabled the detection of prototypical planetary systems (e.g., HR 8799; Marois et al. 2008). Nevertheless, ADI detections are still limited by self-subtraction at close-in regions from the stars (e.g., Milli et al. 2012; Wahhaj et al. 2021), yet these regions are where giant planets are expected to have the most occurrence (1– 10 au; from a combination of radial velocity and high-contrast imaging surveys, e.g., Nielsen et al. 2019; Fulton et al. 2021). To overcome this limitation, on the one hand, better optimized post-processing methods for ADI datasets were developed (e.g., Pairet et al. 2021; Flasseur et al. 2021; Juillard et al. 2022, 2023). On the other hand, the diversity in archival observational data can enable the usage of other stars as the templates to remove star light and speckles with the reference differential imaging (RDI) data reduction strategy (e.g., Ruane et al. 2019; Xie et al. 2022). Moving forward along the direction of RDI, the Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE; Beuzit et al. 2019) at the Very Large Telescope (VLT) from European Southern Observatory (ESO) initiated the star-hopping mode (Wahhaj et al. 2021), which offers quasi-simultaneous observations of a science star and its reference star, unleashing the full potential in exoplanet imaging in close-in regions for SPHERE. Determining dust properties is of fundamental importance for the early stage of grain growth and planetesimal formation, as they will determine the efficiency of grain sticking and fragmentation (Birnstiel et al. 2012). In addition to the planet imaging capabilities with SPHERE, the star-hopping mode enables optimized extraction of disks in scattered light in total intensity. This goes beyond the polarimetric surveys that have been routinely carried out in the near-infrared (e.g., Avenhaus et al. 2018; Garufi et al. 2020; Ginski et al. 2020), and allows us to better study spatial distribution and properties of dust in the disk (e.g., Olofsson et al. 2023). With the observations taken in dualpolarimetry imaging (DPI: Langlois et al. 2010) mode, which probes polarized signals in the scattered light, star-hopping can also offer total intensity imaging from RDI. The combination of both can yield an estimate of the polarization fraction, and thus to better constrain dust properties (e.g., shape, composition: Ginski et al. 2023; Tazaki et al. 2023). In this study, we present the first large survey of protoplanetary disks in total intensity from the ground. As many as 29 young stars are surveyed in Ks-band with VLT/SPHERE in the star-hopping mode. Our target sample consists of both transition disk systems to search for protoplanets that can potentially reside in the close-in regions with star-hopping that are otherwise unachievable (Wahhaj et al. 2021), and non-transition disk sample of faint disks in the infrared to search for planets in their outer disk regions. We also aim to derive the polarization fraction whenever possible. The paper is structured as follows: Sect. 2 provides the description of the observations and data reduction procedure, Sect. 3 presents the polarized light and total intensity maps, Sect. 4 shows the detection limits of companions, and in Sect. 5 we present the polarization fraction maps. We summarize and conclude the study in Sect. 6.

Read more related articles.




 




 




 



Conclusion
We obtained Ks-band imaging of protoplanetary disks in scattered light using SPHERE/IRDIS on VLT for 29 systems in starhopping mode. In the DPI setup of IRDIS imaging, we can obtain both polarized light observations and total intensity observations simultaneously. By modeling the interior regions of the IRDIS Ks-band control ring using the information on the control ring with DI-sNMF, we have identified 15 systems in total intensity light with unprecedented data quality. For the RDI results from DI-sNMF, we calculated the companion detection limits for these observations with high-quality disk recovery: the existence of disks do raise the Ks-band detection limits in comparison to the exploration in K1-/K2-band in Wahhaj et al. (2021). Nevertheless, an actual detection is a tradeoff between contrast and band-integrated companion luminosity, and thus narrower bands do not necessarily always provide better detections. Given that star-hopping observation has no dependence on sky rotation in the pupil-tracking mode, and that it can reach similar mass detection limits as ADI observations, it should be preferred to ADI observations in terms of observational schedulability. Together with the IRDIS Qϕ data, we obtained the polarization fraction maps for these systems. With these polarization fraction maps, we can reduce the confusion by blob structures resembling planetary signals, since signals from giant protoplanets are not expected to be polarized. For the polarization fraction maps, we described the polarization fraction curves using analytical beta distributions. The polarization fractions peak between ∼20% and ∼50%, yet they could be smaller than the actual values due to convolution effects from instrumentation. Assuming these polarization fraction curves are a credible representation of the actual polarization fractions, or if they undergo similar convolution effects, then we observe a tentative trend: the peak polarization fraction increases with the peak scattering angle. Using the Tazaki & Dominik (2022) and Tazaki et al. (2023) dust models from the AggScatVIR database, we could reproduce such a trend using absorptive materials for GRS dust; nevertheless, such models do not produce the individual polarization fraction curves. In addition, there can be alternative explanations with different dust parameters, and more future analysis and dust modeling are needed to interpret the observed polarization fraction curves. Moving forward, more comprehensive extraction of the polarization fraction curves – including modeling the disk components separately – can better help in comparing the scattering properties within each disk. In addition, lab measurements (e.g., Muñoz et al. 2021; Frattin et al. 2022) may provide important dust information for the observed polarization fraction curves. For the 26 systems that have existing IRDIS observations in shorter wavelengths (Y-, J-, or H-band), we obtained the color of these systems at ∼90◦ scattering angle in polarized light. For Jpol − Ks pol and Hpol − Ks pol color in polarized light, we observe trends that the color is relatively redder when stellar luminosity increases. Such a trend indicates that the scatterers are larger for more luminous stars (e.g., Ren et al. 2023; Crotts et al. 2023). In addition, while the polarized H − Ks color here has a marginal trend of being relatively redder as stellar luminosity increases, the color ranges from red to blue for systems similar stellar luminosity, demonstrating the diversity of scatterers in different systems. In order to obtain the properties of the scatterers (e.g., mineralogy, morphology, porosity, size), detailed radiative transfer modeling efforts adopting realistic models (e.g., Tazaki & Dominik 2022; Tazaki et al. 2023) are needed. Using the SPHERE/IRDIS control ring for RDI data reduction with DI-sNMF, we cannot yet recover the disks in total intensity for systems with Gaia DR3 Rp ≳ 11 or 2MASS K ≳ 8. For the sample with high selection bias here, our logistic regression results indicate that brighter hosts, redder references, and brighter references in observational wavelengths could aid in detecting disks. Given that there is no clear evidence that closer-in references can provide better RDI imagery for the hosts, starhopping users can attribute a lower priority to on-sky proximity in reference selection.

References
Adams Redai, J. I., Follette, K. B., Wang, J., et al. 2023, AJ, 165, 57 Allard, F., Homeier, D., Freytag, B., & Sharp, C. M. 2012, EAS Publications Series, 57, 3 Amara, A., & Quanz, S. P. 2012, MNRAS, 427, 948 Asensio-Torres, R., Henning, T., Cantalloube, F., et al. 2021, A&A, 652, A101 Avenhaus, H., Quanz, S. P., Garufi, A., et al. 2018, ApJ, 863, 44 Bae, J., Isella, A., Zhu, Z., et al. 2023, Astronomical Society of the Pacific Conference Series, 534, 423 Bae, J., Zhu, Z., Baruteau, C., et al. 2019, ApJ, 884, L41 Balmer, W. O., Follette, K. B., Close, L. M., et al. 2022, AJ, 164, 29 Baraffe, I., Chabrier, G., Barman, T. S., et al. 2003, A&A, 402, 701 Baraffe, I., Homeier, D., Allard, F., & Chabrier, G. 2015, A&A, 577, A42 Benisty, M., Juhasz, A., Boccaletti, A., et al. 2015, A&A, 578, L6 Benisty, M., Stolker, T., Pohl, A., et al. 2017, A&A, 597, A42 Benisty, M., Juhász, A., Facchini, S., et al. 2018, A&A, 619, A171 Benisty, M., Dominik, C., Follette, K., et al. 2023, Astronomical Society of the Pacific Conference Series, 534, 605 Beuzit, J. L., Vigan, A., Mouillet, D., et al. 2019, A&A, 631, A155 Birnstiel, T., Klahr, H., & Ercolano, B. 2012, A&A, 539, A148 Boccaletti, A., Di Folco, E., Pantin, E., et al. 2020, A&A, 637, L5 Boccaletti, A., Pantin, E., Ménard, F., et al. 2021, A&A, 652, L8 Bohn, A. J., Benisty, M., Perraut, K., et al. 2022, A&A, 658, A183 Bressan, A., Marigo, P., Girardi, L., et al. 2012, MNRAS, 427, 127 Calcino, J., Price, D. J., Pinte, C., et al. 2019, MNRAS, 490, 2579 Canovas, H., Ménard, F., de Boer, J., et al. 2015, A&A, 582, L7 Cantalloube, F., Mouillet, D., Mugnier, L. M., et al. 2015, A&A, 582, A89 Chen, C., Mazoyer, J., Poteet, C. A., et al. 2020, ApJ, 898, 55 Choi, J., Dotter, A., Conroy, C., et al. 2016, ApJ, 823, 102 Cleeves, L. I., Öberg, K. I., Wilner, D. J., et al. 2016, ApJ, 832, 110 Coulson, I. M., & Walther, D. M. 1995, MNRAS, 274, 977 Crotts, K. A., Matthews, B. C., Duchene, G., et al. 2023, AJ, submitted Cugno, G., Pearce, T. D., Launhardt, R., et al. 2023, A&A, 669, A145 Currie, T., Biller, B., Lagrange, A., et al. 2023, Astronomical Society of the Pacific Conference Series, 534, 799 Currie, T., Marois, C., Cieza, L., et al. 2019, ApJ, 877, L3 Currie, T., Lawson, K., Schneider, G., et al. 2022, NatAs, 6, 751 de Boer, J., Salter, G., Benisty, M., et al. 2016, A&A, 595, A114 De Rosa, R. J., Nielsen, E. L., Wahhaj, Z., et al. 2023, A&A, 672, A94 Debes, J. H., Ren, B., & Schneider, G. 2019, JATIS, 5, 035003 Desai, N., Llop-Sayson, J., Bertrou-Cantou, A., et al. 2022, Proc. SPIE, 12180, 121805H Dohlen, K., Langlois, M., Saisse, M., et al. 2008, Proc. SPIE, 7014, 70143L Dong, R., Zhu, Z., Rafikov, R. R., & Stone, J. M. 2015, ApJ, 809, L5 Dong, R., Hashimoto, J., Rafikov, R., et al. 2012, ApJ, 760, 111 Dullemond, C. P., & Dominik, C. 2005, A&A, 434, 971 Engler, N., Schmid, H. M., Quanz, S. P., et al. 2018, A&A, 618, A151 Engler, N., Schmid, H. M., Thalmann, C., et al. 2017, A&A, 607, A90 Engler, N., Milli, J., Gratton, R., et al. 2023, A&A, 672, A1 Flasseur, O., Thé, S., Denis, L., et al. 2021, A&A, 651, A62 Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306 Francis, L., & van der Marel, N. 2020, ApJ, 892, 111 Franson, K., Bowler, B. P., Zhou, Y., et al. 2023, ApJ, 950, L19 Frasca, A., Biazzo, K., Lanzafame, A. C., et al. 2015, A&A, 575, A4 Frattin, E., Martikainen, J., Muñoz, O., et al. 2022, MNRAS, 517, 5463 Fulton, B. J., Rosenthal, L. J., Hirsch, L. A., et al. 2021, ApJS, 255, 14 Gaia Collaboration, Vallenari, A., Brown, A. G. A., et al. 2023, A&A, 674, A1 Garufi, A., Quanz, S. P., Schmid, H. M., et al. 2016, A&A, 588, A8 Garufi, A., Benisty, M., Pinilla, P., et al. 2018, A&A, 620, A94 Garufi, A., Avenhaus, H., Pérez, S., et al. 2020, A&A, 633, A82 Garufi, A., Dominik, C., Ginski, C., et al. 2022, A&A, 658, A137 Ginski, C., Tazaki, R., Dominik, C., & Stolker, T. 2023, ApJ, 953, 92 Ginski, C., Stolker, T., Pinilla, P., et al. 2016, A&A, 595, A112 Ginski, C., Benisty, M., van Holstein, R. G., et al. 2018, A&A, 616, A79 Ginski, C., Ménard, F., Rab, C., et al. 2020, A&A, 642, A119 Gray, R. O., Riggs, Q. S., Koen, C., et al. 2017, AJ, 154, 31 Groff, T. D., Riggs, A. J. E., Kern, B., & Kasdin, N. J. 2016, JATIS, 2, 011009 Guyon, O., Norris, B., Martinod, M.-A., et al. 2021, Proc. SPIE, 11823, 1182318 Haffert, S. Y., Bohn, A. J., de Boer, J., et al. 2019, NatAs, 3, 749 Hammond, I., Christiaens, V., Price, D. J., et al. 2023, MNRAS, 522, L51 Hauschildt, P. H., Allard, F., Ferguson, J., et al. 1999, ApJ, 525, 871 Herbig, G. H. 1977, ApJ, 214, 747 Herbig, G. H., Vrba, F. J., & Rydgren, A. E. 1986, AJ, 91, 575 Herczeg, G. J., & Hillenbrand, L. A. 2014, ApJ, 786, 97 Houk, N., & Swift, C. 1999, Michigan Spectral Survey, 5, 0 Irvine, N. J., & Houk, N. 1977, PASP, 89, 347 Jones, M. I., Milli, J., Blanchard, I., et al. 2022, A&A, 667, A114 Joy, A. H. 1949, ApJ, 110, 424 Juillard, S., Christiaens, V., & Absil, O. 2022, A&A, 668, A125 —. 2023, arXiv, arXiv:2309.14827 Keppler, M., Benisty, M., Müller, A., et al. 2018, A&A, 617, A44 Kiselev, N. N., Rosenbush, V. K., Petrov, D., et al. 2022, MNRAS, 514, 4861 Kraus, A. L., & Ireland, M. J. 2012, ApJ, 745, 5 Krishanth P.M., S., Douglas, E. S., Hom, J., et al. 2023, arXiv, arXiv:2309.04623 Langlois, M., Dohlen, K., Augereau, J. C., et al. 2010, Proc. SPIE, 7735, 77352U Law, C. J., Booth, A. S., & Öberg, K. I. 2023, ApJ, 952, L19 Lawson, K., Currie, T., Wisniewski, J. P., et al. 2022, ApJ, 935, L25 Long, F., Herczeg, G. J., Pascucci, I., et al. 2018, ApJ, 863, 61 Long, F., Andrews, S. M., Zhang, S., et al. 2022, ApJ, 937, L1 Ma, J., Schmid, H. M., & Tschudi, C. 2023, A&A, 676, A6 Maire, A.-L., Langlois, M., Dohlen, K., et al. 2016, Proc. SPIE, 9908, 990834 Maire, A.-L., Langlois, M., Delorme, P., et al. 2021, JATIS, 7, 035004 Marois, C., Correia, C., Galicher, R., et al. 2014, Proc. SPIE, 9148, 91480U Marois, C., Lafrenière, D., Doyon, R., et al. 2006, ApJ, 641, 556 Marois, C., Macintosh, B., Barman, T., et al. 2008, Science, 322, 1348 Mawet, D., Milli, J., Wahhaj, Z., et al. 2014, ApJ, 792, 97 Mesa, D., Gratton, R., Kervella, P., et al. 2023, A&A, 672, A93 Milli, J., Mouillet, D., Lagrange, A. M., et al. 2012, A&A, 545, A111 Milli, J., Vigan, A., Mouillet, D., et al. 2017, A&A, 599, A108 Monnier, J. D., Harries, T. J., Bae, J., et al. 2019, ApJ, 872, 122 Mora, A., Merín, B., Solano, E., et al. 2001, A&A, 378, 116 Muñoz, O., Frattin, E., Jardiel, T., et al. 2021, ApJS, 256, 17 Mugnier, L. M., Cornia, A., Sauvage, J.-F., et al. 2009, JOSAA, 26, 1326 Mulders, G. D., Pascucci, I., Manara, C. F., et al. 2017, ApJ, 847, 31 Nielsen, E. L., De Rosa, R. J., Macintosh, B., et al. 2019, AJ, 158, 13 Nousiainen, T., Muinonen, K., & RäIsäNen, P. 2003, Journal of Geophysical Research (Atmospheres), 108, 4025 Ochsenbein, F., Bauer, P., & Marcout, J. 2000, A&AS, 143, 23 Ohta, Y., Fukagawa, M., Sitko, M. L., et al. 2016, PASJ, 68, 53 Olofsson, J., van Holstein, R. G., Boccaletti, A., et al. 2018, A&A, 617, A109 Olofsson, J., Thébault, P., Bayo, A., et al. 2023, A&A, 674, A84 Pairet, B., Cantalloube, F., & Jacques, L. 2021, MNRAS, 503, 3724 Pecaut, M. J., & Mamajek, E. E. 2016, MNRAS, 461, 794 Pence, W. D., Chiappetti, L., Page, C. G., et al. 2010, A&A, 524, A42 Perrin, M. D., Duchene, G., Millar-Blanchaer, M., et al. 2015, ApJ, 799, 182 Pinte, C., Price, D. J., Ménard, F., et al. 2018, ApJ, 860, L13 —. 2020, ApJ, 890, L9 Price, D. J., Cuello, N., Pinte, C., et al. 2018, MNRAS, 477, 1270 Quanz, S. P., Amara, A., Meyer, M. R., et al. 2015, ApJ, 807, 64 Quiroz, J., Wallack, N. L., Ren, B., et al. 2022, ApJ, 924, L4 R Core Team. 2022, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria Rameau, J., Follette, K. B., Pueyo, L., et al. 2017, AJ, 153, 244 Reggiani, M., Christiaens, V., Absil, O., et al. 2018, A&A, 611, A74 Ren, B., Pueyo, L., Chen, C., et al. 2020, ApJ, 892, 74 Ren, B., Pueyo, L., Zhu, G. B., et al. 2018, ApJ, 852, 104 Ren, B., Choquet, É., Perrin, M. D., et al. 2019, ApJ, 882, 64 —. 2021, ApJ, 914, 95 Ren, B. B., Rebollido, I., Choquet, É., et al. 2023, A&A, 672, A114 Riviere-Marichalar, P., Ménard, F., Thi, W. F., et al. 2012, A&A, 538, L3 Ruane, G., Ngo, H., Mawet, D., et al. 2019, AJ, 157, 118 Rydgren, A. E. 1980, AJ, 85, 444 Sallum, S., Follette, K. B., Eisner, J. A., et al. 2015, Nature, 527, 342 Savitzky, A., & Golay, M. J. E. 1964, Analytical Chemistry, 36, 1627 Schmid, H. M., Bazzon, A., Roelfsema, R., et al. 2018, A&A, 619, A9 Shuai, L., Ren, B. B., Dong, R., et al. 2022, ApJS, 263, 31 Siess, L., Dufour, E., & Forestini, M. 2000, A&A, 358, 593 Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163 Soummer, R., Pueyo, L., & Larkin, J. 2012, ApJ, 755, L28 Spiegel, D. S., & Burrows, A. 2012, ApJ, 745, 174 Stadler, J., Benisty, M., Izquierdo, A., et al. 2023, A&A, 670, L1 Stolker, T., Bonse, M. J., Quanz, S. P., et al. 2019, A&A, 621, A59 Stolker, T., Dominik, C., Min, M., et al. 2016, A&A, 596, A70 Sutlieff, B. J., Birkby, J. L., Stone, J. M., et al. 2023, MNRAS, 520, 4235 Szulágyi, J., & Garufi, A. 2021, MNRAS, 506, 73 Tanaka, H., Himeno, Y., & Ida, S. 2005, ApJ, 625, 414 Tazaki, R., & Dominik, C. 2022, A&A, 663, A57 Tazaki, R., Ginski, C., & Dominik, C. 2023, ApJ, 944, L43 Tazaki, R., Tanaka, H., Muto, T., et al. 2019, MNRAS, 485, 4951 Teague, R., Bae, J., Bergin, E. A., et al. 2018, ApJ, 860, L12 Thalmann, C., Janson, M., Garufi, A., et al. 2016, ApJ, 828, L17 Torres, C. A. O., Quast, G. R., da Silva, L., et al. 2006, A&A, 460, 695 Tschudi, C., & Schmid, H. M. 2021, A&A, 655, A37 Uyama, T., Ren, B., Mawet, D., et al. 2020, AJ, 160, 283 van Holstein, R. G., Snik, F., Girard, J. H., et al. 2017, Proc. SPIE, 10400, 1040015 van Holstein, R. G., Girard, J. H., de Boer, J., et al. 2020, A&A, 633, A64 van Holstein, R. G., Stolker, T., Jensen-Clem, R., et al. 2021, A&A, 647, A21 Vieira, S. L. A., Corradi, W. J. B., Alencar, S. H. P., et al. 2003, AJ, 126, 2971 Vigan, A., Fontanive, C., Meyer, M., et al. 2021, A&A, 651, A72 Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, NatMe, 17, 261 Wagner, K., Apai, D., Kasper, M., & Robberto, M. 2015, ApJ, 813, L2 Wagner, K., Stone, J. M., Spalding, E., et al. 2019, ApJ, 882, 20 Wagner, K., Dong, R., Sheehan, P., et al. 2018, ApJ, 854, 130 Wagner, K., Stone, J., Dong, R., et al. 2020, AJ, 159, 252 Wagner, K., Stone, J., Skemer, A., et al. 2023, NatAs, arXiv:2307.04021 Wahhaj, Z., Milli, J., Romero, C., et al. 2021, A&A, 648, A26 Wallack, N. L., Ruffio, J.-B., Ruane, G., et al. 2023, AJ, in press Wang, J. J., Ginzburg, S., Ren, B., et al. 2020, AJ, 159, 263 Wenger, M., Ochsenbein, F., Egret, D., et al. 2000, A&AS, 143, 9 Wilking, B. A., Meyer, M. R., Robinson, J. G., & Greene, T. P. 2005, AJ, 130, 1733 Wölfer, L., Facchini, S., van der Marel, N., et al. 2023, A&A, 670, A154 Wolff, S. G., Perrin, M. D., Stapelfeldt, K., et al. 2017, ApJ, 851, 56 Xie, C., Choquet, E., Vigan, A., et al. 2022, A&A, 666, A32 Xie, C., Ren, B. B., Dong, R., et al. 2023, A&A, 675, L1 Zhou, Y., Bowler, B. P., Yang, H., et al. 2023, arXiv, arXiv:2308.16223

Abstract
Introduction
Conclusion
References

All Products

bottom of page