top of page
ORCID_iD.svg.png

Locked

Tphysicsletters/6698/10/1490/987680tpl/Measurement of the scaling slope of compressible magnetohydrodynamic turbulence by synchrotron radiation statistics

Theoretical Physics Letters.png

Thursday, June 29, 2023 at 1:30:00 PM UTC

Request Open

Article Rating by Publisher
9
Theoretical Physics
Article Rating by Readers
Not Updated
Premium

Measurement of the scaling slope of compressible magnetohydrodynamic turbulence by synchrotron radiation statistics

Xue-Wen Zhang,1 Jian-Fu Zhang,1,2★ Ru-Yue Wang 1 Fu-Yuan Xiang1,2† -------------------------------- 1Department of Physics, Xiangtan University, Xiangtan 411105, China, 2Key Laboratory of Stars and Interstellar Medium, Xiangtan University, Xiangtan 411105, China
Theoretical Physics Letters

2023 ° 29(06) ° 0631-9876

https://www.wikipt.org/tphysicsletters

DOI: https://www.doi.wikipt.org/10/1490/987680tpl

ACKNOWLEDGMENTS

We thank the anonymous referee for valuable comments that significantly improved the quality of the paper. J.F.Z. thanks to the support from the National Natural Science Foundation of China (grant Nos. 11973035), the Hunan Province Innovation Platform and Talent Plan-HuXiang Youth Talent Project (No. 2020RC3045), and the Hunan Natural Science Foundation for Distinguished Young Scholars (No. 2023JJ10039). F.Y.X. acknowledges the support from the Joint Research Funds in Astronomy U2031114 under a cooperative agreement between the National Natural Science Foundation of China and the Chinese Academy of Sciences.

Unlock Only

Changeover the Schrödinger Equation

This option will drive you towards only the selected publication. If you want to save money then choose the full access plan from the right side.

Unlock all

Get access to entire database

This option will unlock the entire database of us to you without any limitations for a specific time period.
This offer is limited to 100000 clients if you make delay further, the offer slots will be booked soon. Afterwards, the prices will be 50% hiked.

Newsletters
ABSTRACT
Based on magnetohydrodynamic turbulence simulations, we generate synthetic synchrotron observations to explore the scaling slope of the underlying MHD turbulence. We propose the new 𝑄-𝑈 cross intensity 𝑋 and cross-correlation intensity 𝑌 to measure the spectral properties of magnetic turbulence, together with statistics of the traditional synchrotron 𝐼 and polarization 𝑃𝐼 intensities. By exploring the statistical behaviour of these diagnostics, we find that the new statistics 𝑋 and 𝑌 can extend the inertial range of turbulence to improve measurement reliability. When focusing on different Alfvénic and sonic turbulence regimes, our results show that the diagnostics proposed in this paper not only reveal the spectral properties of the magnetic turbulence but also gain insight into the individual plasma modes of compressible MHD turbulence. The synergy of multiple statistical methods can extract more reliable turbulence information from the huge amount of observation data from the Low- Frequency Array for Radio astronomy and the Square Kilometer Array.

 




 




 




 




INTRODUCTION
The magnetized turbulent fluids in astrophysical environments can be usually described by magnetohydrodynamic (MHD) turbulence theory, which plays a critical role in many astrophysical processes such as star formation (Mac Low & Klessen 2004), heat conduction (Narayan & Medvedev 2001), magnetic reconnection (Beresnyak 2017), and acceleration of cosmic rays (Yan & Lazarian 2008; Zhang & Xiang 2021; Zhang et al. 2023). Therefore, studying the properties of MHD turbulence helps to advance the theory of MHD turbulence and to understand astrophysical processes associated with MHD turbulence. Here, we briefly describe three significant advances made in earlier research on turbulence. The first is about incompressible nonmagnetized turbulence. By using a self-similarity assumption of the turbulence cascade, Kolmogorov (1941, henceforth K41) derived a power-law relation of 𝐸(𝑘) ∼ 𝑘−5/3 in the inertial range, which is called a classic Kolmogorov spectrum. The second is about incompressible magnetized turbulence. Iroshnikov & Kraichnan (1963; 1965, henceforth IK65) obtained the power-law scaling of 𝐸(𝑘) ∼ 𝑘−3/2 in the inertial range by introducing nonlinear energy cascade. Although IK65 advanced the K41 theory by considering the effect of magnetic fields, it ignored a critical issue that the turbulence should be anisotropic in the magnetized fluids (Montgomery & Turner 1981). The third is still about incompressible magnetized turbulence but focuses on the anisotropy of MHD turbulence due to turbulent magnetic fields. Focused on the nonlinear energy cascade of incompressible strongMHDturbulence, Goldreich&Sridhar power-law scaling and anisotropic relationship, as described in moredetail in Section 2.1. At present, many numerical simulations have significantly increased our knowledge on the scaling, anisotropy and compressibility of MHD turbulence (e.g., Cho & Lazarian 2002; see textbook by Beresnyak & Lazarian 2019; and a recent review by Beresnyak 2019 ). The properties obtained by the simulation ofMHDturbulence can understand the acceleration and propagation of cosmic rays (Yan & Lazarian 2002). In particular, the turbulent reconnection model proposed in Lazarian & Vishniac (1999, hereafter LV99), which provides a new interpretation for GS95 theory from the perspective of eddies, has been applied to various astrophysical environments such as gamma-ray bursts (Lazarian et al. 2003; Zhang & Yan 2011), microquasars (de Gouveia dal Pino & Lazarian 2005), active galactic nuclei (Kadowaki et al. 2015) and radio galaxies (Brunetti & Lazarian 2016). Due to the large scale of astrophysical system with a high Reynolds number 𝑅e > 1010, it is challenging to simulate a realistic astrophysical environment by direct numerical simulation. The currently available 3D MHD simulations can achieve the case of the Reynolds number 𝑅e ≃ 105 (e.g., Beresnyak & Lazarian 2019). A distinctive feature is that the realistic inertial range in astrophysical turbulence is much greater than that revealed by numerical simulations. It is more effective to move away from direct numerical simulations and develop statistical techniques using observational data, to explore the properties of MHD turbulence.

 



 




 


CONCLUSION
In this paper, we proposed two new synchrotron diagnostics: the cross intensity 𝑋 and cross-correlation intensity𝑌 to reveal theMHD turbulence properties. Using their PS and SF together with traditional diagnostics 𝑃𝐼 and 𝐼, we have well understood the spectral properties of the underlying compressible MHD turbulence. We focused on exploring how Mach numbers, noise, Faraday depolarization, and numerical resolution affect the spectral measurement of magnetic turbulence. The main results are summarized as follows.
• The SF of statistics 𝑋, 𝑌, 𝑃𝐼, and 𝐼 can determine the scaling slope of MHD turbulence in sub-Alfvénic regimes. Interestingly,new statistics 𝑌 could better measure the scaling slope compared with other statistics 𝑋, 𝑃𝐼, and 𝐼 in the different Alfvénic regimes.
• The noise does not impede the recovery of the scaling index of MHD turbulence, and the inertial range of PS measured by 𝑋 is wider than that by 𝑃𝐼 and 𝑌 at the same noise level.
• In the case of moderate Faraday depolarization, they still improve the scaling slope measurements since the statistics 𝑋 and 𝑌 extend the inertial range. The influence of numerical resolution does not change our conclusions.
• The change of angle between the mean magnetic field and the LOS does not affect the measurement of the scaling index, but the inertial range and amplitude.
• Using the synchrotron radiation diagnostics (𝑋, 𝑌 and 𝑃𝐼) can measure the spectral properties of Alfvén, slow and fast modes.

No posts published in this language yet
Once posts are published, you’ll see them here.
REFERENCES
Beresnyak A., 2014, ApJ, 784, L20
Beresnyak A., 2017, ApJ, 834, 47
Beresnyak A., 2019, Living Reviews in Computational Astrophysics, 5, 2
Beresnyak A., Lazarian A., 2010, ApJ, 722, L110
Beresnyak A., Lazarian A., 2019, Turbulence in Magnetohydrodynamics,
Studies in Mathematical Physics, 12, De Gruyter
Boldyrev S., 2006, Phys. Rev. Lett., 96, 115002
Brunetti G., Lazarian A., 2016, MNRAS, 458, 2584
Burkhart B., Lazarian A., Gaensler B. M., 2012, ApJ, 749, 145
Carmo L., et al., 2020, ApJ, 905, 130
Chandran B. D. G., Schekochihin A. A., Mallet A., 2015, ApJ, 807, 39
Cho J., Lazarian A., 2002, Phys. Rev. Lett., 88, 245001
Cho J., Lazarian A., 2003, MNRAS, 345, 325
Federrath C., 2013, MNRAS, 436, 1245
Gaensler B. M., et al., 2011, Nature, 478, 214
Galtier S., Banerjee S., 2011, Phys. Rev. Lett., 107, 134501
Goldreich P., Sridhar S., 1995, ApJ, 438, 763
Herron C. A., Burkhart B., Lazarian A., Gaensler B. M., McClure-Griffiths
N. M., 2016, ApJ, 822, 13
Iacobelli M., et al., 2013, A&A, 558, A72
Iroshnikov P. S., 1963, Azh, 40, 742
Kadowaki L. H. S., de Gouveia Dal Pino E. M., Singh C. B., 2015, ApJ, 802, 113
Kolmogorov A., 1941, Akademiia Nauk SSSR Doklady, 30, 301
Kowal G., Lazarian A., 2010, ApJ, 720, 742
Kraichnan R. H., 1965, Physics of Fluids, 8, 1385
Lazarian A., 2006, ApJ, 645, L25
Lazarian A., Pogosyan D., 2004, ApJ, 616, 943
Lazarian A., Pogosyan D., 2012, ApJ, 747, 5
Lazarian A., Pogosyan D., 2016, ApJ, 818, 178
Lazarian A., Vishniac E. T., 1999, ApJ, 517, 700
Lazarian A., Yuen K. H., 2018, ApJ, 865, 59
Lazarian A., Petrosian V., Yan H., Cho J., 2003, arXiv e-prints, pp astro– ph/0301181
Lazarian A., Yuen K. H., Lee H., Cho J., 2017, ApJ, 842, 30
Lazarian A., Yuen K. H., Pogosyan D., 2022, ApJ, 935, 77
Lee H., Lazarian A., Cho J., 2016, ApJ, 831, 77
Lee H., Cho J., Lazarian A., 2019, ApJ, 877, 108
Liu M., Hu Y., Lazarian A., Xu S., Soida M., 2023, MNRAS, 519, 1068
Longair M. S., 2011, High Energy Astrophysics. Cambridge University Press, Cambridge
Mac Low M.-M., Klessen R. S., 2004, Reviews of Modern Physics, 76, 125
Malik S., Yuen K. H., Yan H., 2023, arXiv e-prints, p. arXiv:2303.17282
Mallet A., Schekochihin A. A., 2017, MNRAS, 466, 3918
Maron J., Goldreich P., 2001, ApJ, 554, 1175
Monin A. S., Yaglom A. M., 1975, Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 2. The MIT Press, Cambridge, Massachusetts
Montgomery D., Turner L., 1981, Physics of Fluids, 24, 825
Narayan R., Medvedev M. V., 2001, ApJ, 562, L129
Rybicki G. B., Lightman A. P., 1979, Radiative processes in astrophysics. Wiley, New York
Sampson M. L., Beattie J. R., Krumholz M. R., Crocker R. M., Federrath C.,
Seta A., 2023, MNRAS, 519, 1503
Schekochihin A. A., Cowley S. C., Taylor S. F., Maron J. L., McWilliams
J. C., 2004, ApJ, 612, 276
Schnitzeler D. H. F. M., Katgert P., Haverkorn M., de Bruyn A. G., 2007, A&A, 461, 963
Sun X. H., Gaensler B. M., Carretti E., Purcell C. R., Staveley-Smith L.,
Bernardi G., Haverkorn M., 2014, MNRAS, 437, 2936
Sun X.-H., Gao X.-Y., Reich W., Jiang P., Li D., Yan H., Li X.-H., 2022, Research in Astronomy and Astrophysics, 22, 125011
Van Eck C. L., et al., 2017, A&A, 597, A98
Waelkens A. H., Schekochihin A. A., Enßlin T. A., 2009, MNRAS, 398, 1970
Wang R.-Y., Zhang J.-F., Xiang F.-Y., 2020, ApJ, 890, 70
Wang R.-Y., Zhang J.-F., Lazarian A., Xiao H.-P., Xiang F.-Y., 2021,MNRAS, 505, 6206
Wang R.-Y., Zhang J.-F., Lazarian A., Xiao H.-P., Xiang F.-Y., 2022, ApJ, 940, 158
West J. L., Henriksen R. N., Ferrière K., Woodfinden A., Jaffe T., Gaensler
B. M., Irwin J. A., 2020, MNRAS, 499, 3673
Yan H., Lazarian A., 2002, Phys. Rev. Lett., 89, 281102
Yan H., Lazarian A., 2008, ApJ, 673, 942
Yang B., Zhang J.-F., Lazarian A., de Medeiros J. R., 2021, MNRAS, 503, 768
Yuen K. H., Lazarian A., 2017, ApJ, 837, L24
Zhang J.-F., Xiang F.-Y., 2021, ApJ, 922, 209
Zhang B., Yan H., 2011, ApJ, 726, 90
Zhang J.-F., Lazarian A., Lee H., Cho J., 2016, ApJ, 825, 154
Zhang J.-F., Lazarian A., Xiang F.-Y., 2018, ApJ, 863, 197
Zhang J.-F., Lazarian A., Ho K. W., Yuen K. H., Yang B., Hu Y., 2019a, MNRAS, 486, 4813
Zhang J.-F., Liu Q., Lazarian A., 2019b, ApJ, 886, 63
Zhang H., Chepurnov A., Yan H., Makwana K., Santos-Lima R., Appleby S., 2020a, Nature Astronomy, 4, 1001
Zhang J.-F., Hu K., Cho J., Lazarian A., 2020b, ApJ, 895, 20
Zhang J.-F., Xu S., Lazarian A., Kowal G., 2023, Journal of High Energy Astrophysics, submitted de Gouveia dal Pino E. M., Lazarian A., 2005, A&A, 441, 845

Abstract
Introduction
Conclusion
References

All Products

bottom of page